Algorithms Fall 2019

Eric A. Autry

August 27, 2019

Course People

Professor

» Eric Autry

» eric.autry@duke.edu

» Office: Physics 017 (Physics Building Basement)
TAs
Jiaran Zhou

v

v

Prathikshaa Rangarajan
Yukun Yang

Fengyi Li

Nan Ni

Jingru Gao

Hanyu Xie

Kai Zhang

v

v

v

v

v

v

Office Hours and Study Hall

Office Hours:
» Still finalizing schedule and room reservations.

» Will be posted on course website and sent out in an
announcement.

Study Hall: Wednesday 4 - 8 pm in TBD

» | will be present to answer questions, along with 2-3 TAs
for the entire time.

Homework and projects will be due in class on Thursdays
(typically).

Website

» We will be using the course’s Sakai site. Make sure you
have access to the site.

» Major announcements will be sent through Sakai. A test
announcement was sent this morning before class. Make

sure you received it.

» Course notes will be posted on the website in the form of
annotated lecture slides within a day or two of the lecture.

» All homework and projects will be posted on the Sakai site.
» All grades will be posted on Sakai.

» We will be using the course Piazza available through
Sakai.

Textbooks

There will be NO required textbooks for this course.

If you are interested, the textbooks | am using:

» Michael Sipser, Introduction to the Theory of Computation

» Third Edition
» ISBN-13: 978-1133187790, ISBN-10: 113318779X

» Sanjoy Dasgupta, Algorithms
» ISBN-13: 978-0073523408, ISBN-10: 0073523402

Course Grading

Homework: 30%
» Pen-and-paper assignments. Probably 8 of them.

Projects: 30%
» Programming assignments. Probably 4 of them.

Midterm: 15%
» Date: September 26th (or October 1st) in class

Final: 25%
» Date:

» 11:45 am Section: December 16th, 7 pm - 10 pm
» 4:40 pm Section: December 11th, 2 pm - 5 pm

Style Points

Up to 10% of both written homework and coding projects will be
‘style’ points.

Basic idea: homework should be legible and organized,
arguments should be complete but concise, and code should
be well commented and elegant.

More thorough guidelines will be discussed when the first
homework and first project are assigned.

Late Policy

Each student will receive 3 ‘late tokens’ that can each be used
for a 24-hour extension on any homework assignment or
project.

Otherwise: -10% per day late

Collaboration Policy

» All students are expected to follow the Duke Community
Standard found at: integrity.duke.edu/standard.html

» Quiz 0 posted on Sakai asks that all students to read this
Standard and provide an electronic signature to indicate
that they will adhere to this Standard throughout their work
in this course.

» Collaboration is allowed and encouraged for both
homework and projects.
» Collaboration is not copying.
» It is not acceptable for one student to simply give another
student a solution.

» Each student is expected to submit their own solution in
their own words.

Collaboration Policy

For projects, pair programming is encouraged with the following
guidelines:

» No more than two students can work together.

» Each pair will submit a single version of their solution,
indicating the names of the two partners clearly in the
submission.

» Each of the partners must be present and working at the
same computer any time work is being done on their
project.

» 50-50 rule: each of the partners should spend 50% of the
time ‘driving’ and 50% of the time ‘navigating.

Emergency Classroom Procedures

Guidelines for what to do in an emergency can be found at:
emergency.duke.edu/what-to-do

In most cases you will receive a DukeALERT notification by
email and text if there is an emergency situation on campus,
and you may also hear the outdoor sirens.

» Tornado
» Fire
» Active Shooter

Disability Accommodations

The Student Disability Access Office (SDAO) and the Academic

Resource Center (ARC) grant ‘accommodations’ or
‘interventions’ to students with documented disabilities.

Please email me at eric.autry@duke.edu if you are one of
these students and | will work with you to find proper

accommodations.

Course Overview

So... What is this course about?

The focus of this course is on problem solving:

» what problems we might consider

» those we can solve VS those that cannot be solved

» what techniques we might use

» what machines might help us

Question 1

The first major question we will consider:

What is a computation machine, and what sort of problems can
it solve?

Unsolvable Problems

There do exist problems that are provably unsolvable.

For example, these basic questions about the performance of
provided code:

» Are two pieces of code equivalent to each other?
» Will this code enter an infinite loop?

» Will two different variables in this code ever have the same
value?

Automata Theory

Automata Theory

We will build a theoretical framework of computation and create
a mathematical description of the machines used.

This framework will allow us to classify problems based on their
‘difficulty’.

» computational trade-off: power vs analyzability

» goal: use the least powerful machine that gets the job done

Our discussion of Automata Theory will culminate with a
description of the powerhouse of computing: Turing Machines.

Question 2

Now that we have a sense of what problem can actually be
solved, our next natural question is:

How?

Or, more specifically:

How can we solve problems efficiently and optimally?

Basic Algorithmic Tactics

We will discuss a number of basic approaches that many
algorithms rely upon.

These are the ‘building blocks’ of more complicated algorithms
we will see:

Greed

Recursion
Divide-and-Conquer
Use it or Lose it
Dynamic Programming

v

v

v

v

v

Complexity

Once we have a sense for what methods we can use, we can
start to discuss their complexity.

Algorithmic complexity is a way to represent how efficient an
algorithm is.

Usually presented: the number of actions performed as a
function of the size of the input (for large inputs). This is called
the asymptotic runtime of the algorithm.

Derivation of Well Known Algorithms

At this point in the course, we will have a sense of the
algorithmic tactics we can use, and an understanding of the
methods to measure an algorithm’s complexity.

This knowledge will allow us to begin examining some of the
classical problems, and to derive the famous algorithms used to
solve them:

v

Sorting a List

Shortest Path in a Graph (aka ‘Network’)
Minimum Spanning Trees

Network Flow

and more...

v

v

v

v

Question 3

We have now begun to answer:
» What problems are solvable.

» How problems can be solved efficiently.

It now becomes natural to ask:

Can all problems be solved efficiently, and if not, is there a way
to efficiently approximate the solutions?

Question 3

Can all problems be solved efficiently?

$1,000,000 Question:

Does P = NP?

NP Complete Problems

The last major topic we will examine in this course is:
NP Completeness

We will see a number of NP Complete Problems and how they
relate to each other:

» 3SAT

» Vertex Cover

Linear Programming
Hamiltonian Paths and Cycles
Traveling Salesman

v

v

v

v

and many others...

NP Problems and Turing Machines

As it turns out, NP stands for nondeterministic polynomial time
problems.

These are the set of all problems that can be solved in
polynomial time (i.e. ‘can be solved efficiently’) by a
nondeterministic Turing Machine.

It's a good thing we start the course with Turing Machines!

