
Lecture 19 - Greed

Eric A. Autry

1 / 21

Last time: Floyd-Warshall

This time: Greed (and MST)

Next time: Amortized Analysis

Project 2 due this Friday the 16th.

Project 3 assigned today and due Tuesday the 27th.

Homework 7 will be assigned this week and also due Tuesday
the 27th.

2 / 21

Greedy Algorithms

New algorithmic tactic: greed.

Idea: when making successive choices, always take the
greediest option.

I Usually the greedy approach is easy to develop.
I Ex: ‘use as many of the largest coin as possible’

I Usually it seems reasonable and intuitive.

I Very often, however, it is NOT correct.
I Ex: greedy skis

I So it is important to prove correctness, i.e., prove that
greed gives an optimal solution.

I Proving that a greedy algorithm always supplies an optimal
solution can be quite difficult, and there is no set procedure
for such proofs.

3 / 21

Proving Greed is Correct
The general idea behind many of these proofs:

1. Make ‘greedy’ observations about the problem (difficult).

I Ex: What is the largest number if coins of a given size that
we could want to use?

I Ex: Using slightly less than this, what is the most change
that we could make?

2. Consider an optimal solution that is different from the
greedy solution.

3. Consider a choice where they differ (often pick the first
such choice).

I Ex: Look at the largest coin for which the optimal solution
gave a different number.

4. Show that the greedy choice was not worse, or perhaps
was better.

I Ex: Greed gave more quarters. Why give 5 nickels when
you can give 1 quarter?

4 / 21

Activity Selection Problem

Let’s say that we have a list of activities we want to participate in
(like classes to register for or computational tasks to schedule).

But, we can only do one activity at a time.

How should we select activities so that we participate in as
many as possible?

More precisely: the activities are given as a list of intervals with
start times si and end times ti.

5 / 21

Activity Selection Problem

What possible greedy approach will work?

I Choose the shortest interval first?

I Choose the interval that starts first?

I Choose the interval that ends first?

I Choose the interval with the fewest overlaps?

Think-Pair-Share (in English):

Can you find counter-examples for the three that wont work?

Can you prove correctness for the one that does work?

6 / 21

Choosing the shortest interval does not work.

Selecting the shortest here blocks the other two.

7 / 21

Choosing the interval that starts first does not work.

That long, first activity conflicts with every other activity, so
selecting it is clearly not optimal here.

8 / 21

Choosing the interval with the fewest overlaps does
not work.

The middle segment only overlaps with 2 other activities, so it
would be selected. But this choice only allows for 3 activities
instead of the optimal 4.

9 / 21

Activity Selection Problem
Greedy algorithm: iteratively choose the interval that ends first.

Proof:
I Consider an optimal solution that differs from the greedy

solution.
I Look at the first activity where they differ, i.e., opt picked σi

and greed picked gi.
I Clearly gi ended at an earlier time (because it was the

greedy choice).
I But that means that σi and gi overlap at that time, since

otherwise opt could have done better by selecting both.
I But if they overlap, then only one of them could have been

selected.
I And gi cannot prevent later activities that σi would have

allowed because gi ends first.
I Thus either choice gives the same number of activities,

and so greed is also optimal.
10 / 21

Huffman Encoding
How can we optimally encode a string into binary?

Ex: let’s say we have a string of length 130 million made out of
characters A, B, C, and D.

I One way to encode into binary is 2 bits per letter:

A = 00, B = 01, C = 10, D = 11

I This takes up 260 MB, can we do better?
I What if I tell you the frequency of each symbol?

Symbol Frequency
A 70 million
B 3 million
C 20 million
D 37 million

Idea: since A is most common, give it the fewest number of bits
as possible at the cost more bits for the other symbols.

11 / 21

Prefix-Free Encoding
There is a danger with using variable length encoding:

I What if A = 0, B = 01, C = 11, D = 001?
I If we are given 001, is that a D or an AB?

Prefix-Free Rule: no symbol’s encoding can be the prefix of
another symbol’s encoding.

Prefix-free encodings can be represented as a full binary tree
(each vertex has 0 or 2 children):

I Each code is generated as a path from root to leaf,
interpreting left as 0 and right as 1.

I Decode by reading left-to-right, moving down the tree until
we reach a leaf.

I This decoding means we just read a unique code for that
symbol.

For this example: A has 1 bit, D has 2 bits, and C and D each
have 3 bits, giving only 213 MB.

12 / 21

Prefix-Free Tree Encoding: Example

Encoding:

A = 0, B = 100, C = 101, D = 11

13 / 21

Huffman Encoding
How do we pick the optimal encoding tree?

Say we have n symbols with frequencies f1, f2, . . . , fn, and we
want a tree that minimizes the overall length of the encoding.

Note: the number of bits for each symbol is equal to its depth in
the tree.

cost of tree =

n∑
i=1

fi · (depth of the ith symbol)

For the previous example, we had fA · 1 + fB · 3 + fC · 3 + fD · 2,
which gave us 70 + 9 + 60 + 74 = 213MB.

Observation #1: the two symbols with the lowest frequency
should be at the bottom of the optimal tree.

I If they weren’t at the bottom, then swapping them down
would improve the encoding.

14 / 21

Huffman Encoding
cost of tree =

n∑
i=1

fi · (depth of the ith symbol)

There is another way to define this cost:
I When encoding/decoding, we pass each bit exactly once.
I For each bit we pass, we move to a new vertex in the tree

(sometimes reseting to root).
I So track the number of times each vertex is visited during

encoding/decoding.
I The sum of all of these numbers will be the length of the

encoding and the cost of the tree.

Observation #2: note that if a vertex has leaf-children with fi
and fj visits, then it must have fi + fj visits since it is visited only
when they are.

In the example, these visited counters are the bracketed
numbers. Summing them gives:
3 + 20 + 23 + 37 + 60 + 70 = 213MB.

15 / 21

Huffman Encoding Implementation
def Huffman(f):

Input: array f[1...n] of frequencies.

Create a priority queue for finding the lowest
frequency symbols, sorting by frequency in f.
Q = PriorityQueue()

Insert ranks into queue and create vertices.
for rank = 1 to n:

Q.insert(rank), Vertex(rank)

Loop over an extra n-1 values (internal vertices).
for k = n+1 to 2n-1:

Get the minimum frequencies.
i = Q.delete min(), j = Q.delete min()

Create a vertex of rank k with children i and j.
Vertex(k), k.child(i), k.child(j)

Set the frequency for k and insert into the queue.
f[k] = f[i] + f[j]
Q.insert(k)

O(n log n) if priority queue is implemented with a binary heap.
16 / 21

Minimum Spanning Trees

Say we want to network computers by linking them, but each
link has a maintenance cost.

What is cheapest possible network?

Observation #1: an optimal network cannot have a cycle,
because removing one edge from the cycle leaves the
computers linked for less cost.

So the solution is connected and acyclic: a tree that spans all
the vertices for a minimum cost, i.e., a minimum spanning tree.

17 / 21

Prim’s Algorithm
A greedy approach:

I Start with an arbitrary vertex.
I Set the starting tree to be this single vertex.
I Find the lightest cost edge leading out of the current tree.

I Note: we can break ties arbitrarily. The worked example
later will break a tie between vertices B and C by choosing
C first (because I felt like it). Either choice results in a MST.

I Add that edge (and new vertex) to the tree.
I Repeat.

Idea: we will track the ‘lightest cost edge leading out of the tree’
by setting vertex.cost to be each unvisited vertex’s lightest cost
edge into the tree (if one exists).

Then we put the unvisited vertices into a priority queue (similar
to Dijkstra’s algorithm - same runtime).

18 / 21

Prim’s Algorithm Implementation
def Prim(graph):

Initialize all costs to ∞ and prev to null.
for vertex in graph:

vertex.cost = ∞
vertex.prev = null

Pick an arbitrary start vertex and set cost to 0.
start = randomVertex(), start.cost = 0

Make the priority queue using cost for sorting.
Q = makequeue(vertices)

while not Q.isEmpty():
Get the next unvisited vertex and visit it.
v = Q.delete min(), v.visited = True

For each edge out of v.
for neighbor in v.neigh:

If the edge leads out, update.
if not neighbor.visited:

if neighbor.cost > weight(v, neighbor):
neighbor.cost = weight(v, neighbor)
neighbor.prev = v

19 / 21

Prim’s Algorithm: Worked Example

Queue:
Vertex: A B C D E F
cost: 0 ∞ ∞ ∞ ∞ ∞
prev: ∅ ∅ ∅ ∅ ∅ ∅

20 / 21

Prim’s Algorithm: Worked Example

Queue:
Vertex: D B C E F
cost: 4 5 6 ∞ ∞
prev: A A A ∅ ∅

21 / 21

Prim’s Algorithm: Worked Example

Queue:
Vertex: C B F E
cost: 2 2 4 ∞
prev: D D D ∅

22 / 21

Prim’s Algorithm: Worked Example

Queue:
Vertex: B F E
cost: 1 3 5
prev: C C C

23 / 21

Prim’s Algorithm: Worked Example

Queue:
Vertex: F E
cost: 3 5
prev: C C

24 / 21

Prim’s Algorithm: Worked Example

Queue:
Vertex: E
cost: 4
prev: F

25 / 21

Prim’s Algorithm: Worked Example

Queue:
Vertex:
cost:
prev:

26 / 21

Kruskal’s Algorithm

Another greedy approach:

I Start with an empty tree.

I Find the minimum cost edge (ties are broken arbitrarily).

I If that edge does not produce a cycle, add it to the tree.

I Repeat until no more edges can be added.

27 / 21

Kruskal’s Algorithm: Worked Example

28 / 21

Kruskal’s Algorithm: Worked Example

29 / 21

Kruskal’s Algorithm: Worked Example

30 / 21

Kruskal’s Algorithm: Worked Example

31 / 21

Kruskal’s Algorithm: Worked Example

32 / 21

Kruskal’s Algorithm: Worked Example

33 / 21

Kruskal’s Algorithm: Worked Example

34 / 21

Kruskal’s Algorithm: Worked Example

35 / 21

MST Proofs of Correctness

To prove that these algorithms are correct, we need to make a
few observations about trees:

Observation #1: (restated) removing an edge from a cycle does
not disconnect a graph.

Observation #2: a tree spanning n nodes has n− 1 edges.

Observation #3: any connected, undirected graph G = (V,E)
with |E| = |V| − 1 is a tree.

36 / 21

The Cut Property

There is one more very important observation we need to
make, called the cut property:

I Suppose edges X are part of a minimum spanning tree.

I Pick any subset of vertices S such that X does not cross
between S and V − S (this partitioning is the ‘cut’).

I Let e be the lightest edge across the cut.

I Then X ∪ {e} is part of some MST.

This allows us to prove both Prim’s and Kruskal’s Algorithms
because the greedy choice is the best!

37 / 21

The ‘Cut’

38 / 21

The Cut Property
If edges X and e are part of the MST T then we are done. So
we will assume that e is not part of T and construct another tree
T ′ = X ∪ {e} that is still a MST.

Note that edges X are part of T, but do not cross the cut.

Now add edge e to T, and note that this creates a cycle which
must include an edge e′ ∈ T that crosses the cut.

Removing edge e′ gives us the new tree T ′, which we know is a
tree based on the observations we made previously.

Now compare the cost of T and T ′:

weight(T ′) = weight(T) + weight(e)− weight(e′)

But both e and e′ were edges that crossed the cut, and e was
the lightest:

weight(e) ≤ weight(e′)

So T ′ is also a MST! 39 / 21

The old MST T

40 / 21

The new MST T ′

41 / 21

Prim’s Cut

42 / 21

Prim’s Cut

43 / 21

Prim’s Cut

44 / 21

Prim’s Cut

45 / 21

Prim’s Cut

46 / 21

Prim’s Cut

47 / 21

Kruskal’s Cut

48 / 21

Kruskal’s Cut

49 / 21

Kruskal’s Cut

50 / 21

Kruskal’s Cut

51 / 21

Kruskal’s Cut

52 / 21

Kruskal’s Cut

53 / 21

Kruskal’s Algorithm
I Start with an empty tree.
I Find the minimum cost edge (ties are broken arbitrarily).
I If that edge does not produce a cycle, add it to the tree.
I Repeat until no more edges can be added.

How can we implement this algorithm?

We will need to track disjoint sets (in order to find the cuts): all
vertices start in their own set, but eventually will all be added to
the same set representing the tree.

We will need a data structure with three operations:
I makeset(v):

create a singleton set containing vertex v
I find(v):

find which set vertex v belongs to (used for finding cuts)
I union(u,v):

merge the sets containing vertices u and v
54 / 21

Kruskal’s Algorithm Implementation
def Kruskal(graph, edges):

Initialize all singleton sets for each vertex.
for vertex in graph:

makeset(vertex)

Initialize the empty MST.
X = {}

Sort the edges by weight.
edges.sort()

Loop through the edges in increasing order.
for e in edge:

If the min edge crosses a cut, add it to our MST.
u, v = e.vertices
if find(u) 6= find(v):

X.append(e)
union(u,v)

Total work:

|V| · makeset + 2|E| · find + (|V| − 1) · union

Data structure: next time.
55 / 21

