
Math 290 Homework 6 Spring 2019

Due: Friday, April 12

Please be sure to read this assignment in detail before beginning.

1 Problem Introduction

In this homework assignment, you will be implementing a number of different
numerical methods for solving systems of ODEs. In particular, we will be
concerned with the mass spring systems given by

~xt = A~x+~b(t), ~x(0) = ~x0,

where

A =

(
0 1

−ω2
0 −2ζω0

)
, ~b(t) =

[
0

f(t)/m

]
, ~x0 =

[
x0
v0

]
,

and

ω0 =

√
k

m
, ζ =

c

2mω0
.

The system parameters are:

• m: the mass of the object

• k: the spring constant

• c: the damping coefficient

• f(t): the outside forcing

• x0: the initial displacement

• v0: the initial velocity

• ω0: the natural frequency of the system

• ζ: the damping ratio

For this homework, we will only be concerned with periodic forcing that takes
the form

f(t) = cos(ωt).

1



2 Numerical Methods

In this homework, you will be responsible for creating function that imple-
ment the four methods we discussed in lecture to solve these mass spring
systems:

• FE: Forward Euler

• BE: Backward Euler

• CN: Crank-Nicolson

• RK4: fourth order Runge-Kutta

Each of these functions will take 7 input values:

• w0, z, m: the natural frequency, damping ratio, and mass of the system

• w: the forcing frequency

• x0: the initial condition, given as a numpy.matrix object, column vector

• T: the final time to solve until

• N: the number of timesteps to use while solving

Each function should output two lists:

• x: a list of the displacement values at each timestep

• t: a list of the times corresponding to the values of x

For each of these functions, you should:

• Create the numpy.matrix A and compute the timestep dt = T/N.

• Preallocate the two length N+1 lists x and t (you can even fill the list t

with its values now, and store the initial displacement as x[0]).

• Perform any other initial setup (i.e., performing any matrix inversions
or LU factorizations as necessary for the given method).

• Loop over each timestep:

– Compute the numpy.matrix vector representing ~b(t) using the values
of w, m, and the current time in the simulation.

– Perform the update step for the given method.

– Store the value of the updated displacement in your list x.

2



3 Testing the Methods

Once you have completed creating the code, you will need to test your meth-
ods. You will do this by specifically considering the following set of parame-
ters:

ω0 = 1, ζ = 1, m = 1, ω = 1.

You will note that this corresponds to an critically damped oscillator being
forced at its natural frequency. We will take the initial conditions

~x0 =

[
0
0

]
,

so that there is no initial displacement or velocity. Instead, all motion will
be determined by the forcing and the response. In this case, we expect the
oscillator to ultimately match the forcing oscillations, as any other response
to the forcing will be exponentially damped away. Indeed, the exact solution
is given by

x(t) =
1

2
(sin t− te−t).

In order to test the four methods, we will consider solving until the final time
of T=10. For each method, you will consider a range of N values and compute
the error of the solution at time T=10 (i.e., you should simulate until time
T=10, and then compare that final value to the above function x(t) evaluated
at time t = 10, in absolute value).

You should choose a range of N values so that the size of the timestep,
∆t = T/N , ranges from 0.1 to 10−5, i.e., you should choose N to be 100,
1000, 104, 105, and 106, and you can include intermediate values if you wish.

Once you have computed the error for this range of N values for each method,
you should generate four plots of error versus N on a log-log scale, and save
these plots. You can do this by directly taking the log of the error and N

values using numpy.log10, or by setting the scale of the plotting to be a log
scale with the commands:

ax.set_yscale(’log’)

ax.set_xscale(’log’)

Make sure that your plots display the correct slopes before continuing.

3



4 Beats and Resonance

Now that we have verified that the methods are performing correctly, we can
begin to explore some of the behaviors of the system. For this part of the
homework, we will consider the model with parameters and initial condition

ω0 = 1, ζ = 0, m = 1, ~x0 =

[
0
0

]
.

We can see that this corresponds to an undamped oscillator with a natural
frequency of 1.

For this part of the homework, we will solve until the final time of T=100. You
should select your favorite of the methods to use for this part and
the next part of the homework. Once you have selected your method,
you will need to determine a suitable value of N to use. You can use the error
plots from the first part of the assignment to inform your choice (noting that
we have now increased the final time T by tenfold), or you can simply choose a
value and examine your results to ensure that your selection is giving reason-
able results. A good starting place is typically the value that gives ∆t ∼ 10−3.

To ensure that your results are reasonable, recall that for an undamped sys-
tem, the amplitude of the resulting oscillations should not decrease. If your
timestep is too large, you will notice that the amplitude of each ‘beat’ (to be
discussed shortly) will decrease slightly in time. This behavior is the result
of what are known as dissipative errors, where energy is lost from the system
due to a cumulation of numerical errors.

Once you have determined the value of N that you will use, simulate the mass
spring system with the following forcing frequencies and plot the results:

ω = 0.8, ω = 0.9, ω = 1.

In the first two cases, you will observe a phenomenon referred to as ‘beats,’
where the amplitude of the resulting oscillations will itself oscillate with the
difference of the forcing frequency and the natural frequency. This occurs due
to periods of either constructive or destructive interference between the two
sinusoidal curves that make up the particular and homogeneous solutions.

4



Indeed, consider the case where ω = 0.8 = 4/5. The exact solution is

x(t) =
25

9

(
cos

(
4t

5

)
− cos t

)
.

So in this case, we would expect to see beats with a frequency of 1/5.

In the case where ω = 1, we are forcing the undamped system at its natural
frequency. So we would expect to see resonance, where the amplitude of the
oscillations increases linearly in time.

Save your three plots of the solution x(t) versus time for each of these forcing
frequencies.

5 Frequency Response Function

Using the same method and values for T and N as you did in the previous
section, you will now be responsible for creating what is known as a frequency
response function or a Bode plot. Consider the (very) underdamped system:

ω0 = 1, ζ =
1

10
, m = 1, ~x0 =

[
0
0

]
.

Due to the presence of the nonzero damping, we do not expect to see exact
resonance as we did in the previous section. However, the system can still re-
spond with very large amplitudes when forced at a frequency near its natural
frequency. Thus it is a common practice in engineering to test a product’s
response to a variety of forcing frequencies and to ensure that the resulting
oscillations never exceed the materials’ specifications.

For this part of the homework, you will consider a range of forcing frequencies
w from 0.1 to 10, incrementing by 0.1. For each frequency, you should simulate
the system until time T=100. You should then compute the maximum dis-
placement achieved, in absolute value, over the course of the simulation and
store that value (i.e., compute max(abs(x)) and store it). You should then
plot this maximum displacement versus frequency on a log-log scale. You
should notice that this function peaks near the natural frequency of ω0 = 1
(which is at location 0 on the log scale), and the maximum displacement
should drop off at nearly a straight line for larger forcing frequencies.

5


